Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Sci Signal ; 16(793): eadd6527, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433004

RESUMO

Uncontrolled inflammation is linked to poor outcomes in sepsis and wound healing, both of which proceed through distinct inflammatory and resolution phases. Eicosanoids are a class of bioactive lipids that recruit neutrophils and other innate immune cells. The interaction of ceramide 1-phosphate (C1P) with the eicosanoid biosynthetic enzyme cytosolic phospholipase A2 (cPLA2) reduces the production of a subtype of eicosanoids called oxoeicosanoids. We investigated the effect of shifting the balance in eicosanoid biosynthesis on neutrophil polarization and function. Knockin mice expressing a cPLA2 mutant lacking the C1P binding site (cPLA2αKI/KI mice) showed enhanced and sustained neutrophil infiltration into wounds and the peritoneum during the inflammatory phase of wound healing and sepsis, respectively. The mice exhibited improved wound healing and reduced susceptibility to sepsis, which was associated with an increase in anti-inflammatory N2-type neutrophils demonstrating proresolution behaviors and a decrease in proinflammatory N1-type neutrophils. The N2 polarization of cPLA2αKI/KI neutrophils resulted from increased oxoeicosanoid biosynthesis and autocrine signaling through the oxoeicosanoid receptor OXER1 and partially depended on OXER1-dependent inhibition of the pentose phosphate pathway (PPP). Thus, C1P binding to cPLA2α suppresses neutrophil N2 polarization, thereby impairing wound healing and the response to sepsis.


Assuntos
Neutrófilos , Sepse , Animais , Camundongos , Sepse/genética , Comunicação Autócrina , Fosfolipases A2 do Grupo IV/genética , Inflamação
2.
Mediators Inflamm ; 2023: 6051946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36687218

RESUMO

Based on the multiomics analysis, this study is aimed at investigating the underlying mechanism of didymin against acute liver injury (ALI). The mice were administrated with didymin for 2 weeks, followed by injection with lipopolysaccharide (LPS) plus D-galactosamine (D-Gal) to induce ALI. The pathological examination revealed that didymin significantly ameliorated LPS/D-Gal-induced hepatic damage. Also, it markedly reduced proinflammatory cytokines release by inhibiting the TLR4/NF-κB pathway activation, alleviating inflammatory injury. A transcriptome analysis proved 2680 differently expressed genes (DEGs) between the model and didymin groups and suggested that the PI3K/Akt and metabolic pathways might be the most relevant targets. Meanwhile, the metabolome analysis revealed 67 differently expressed metabolites (DEMs) between the didymin and model groups that were mainly clustered into the glycerophospholipid metabolism, which was consistent with the transcriptome study. Importantly, a comprehensive analysis of both the omics indicated a strong correlation between the DEGs and DEMs, and an in-depth study demonstrated that didymin alleviated metabolic disorder and hepatocyte injury likely by inhibiting the glycerophospholipid metabolism pathway through the regulation of PLA2G4B, LPCAT3, and CEPT1 expression. In conclusion, this study demonstrates that didymin can ameliorate LPS/D-Gal-induced ALI by inhibiting the glycerophospholipid metabolism and PI3K/Akt and TLR4/NF-κB pathways.


Assuntos
NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Transcriptoma , Receptor 4 Toll-Like/metabolismo , Fígado/metabolismo , Metaboloma , Glicerofosfolipídeos/metabolismo , Glicerofosfolipídeos/farmacologia , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Fosfolipases A2 do Grupo IV/farmacologia
3.
Molecules ; 27(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408744

RESUMO

Group IVA cytosolic phospholipase A2α (cPLA2α) is a key enzyme in physiology and pathophysiology because it constitutes a rate-limiting step in the pathway for the generation of pro- and anti-inflammatory eicosanoid lipid mediators. cPLA2α activity is tightly regulated by multiple factors, including the intracellular Ca2+ concentration, phosphorylation reactions, and cellular phosphatidylinositol (4,5) bisphosphate levels (PtdInsP2). In the present work, we demonstrate that phosphorylation of the enzyme at Ser505 is an important step for the translocation of the enzyme to PtdInsP2-enriched membranes in human cells. Constructs of eGFP-cPLA2 mutated in Ser505 to Ala (S505A) exhibit a delayed translocation in response to elevated intracellular Ca2+, and also in response to increases in intracellular PtdInsP2 levels. Conversely, translocation of a phosphorylation mimic mutant (S505E) is fully observed in response to cellular increases in PtdInsP2 levels. Collectively, these results suggest that phosphorylation of cPLA2α at Ser505 is necessary for the enzyme to translocate to internal membranes and mobilize arachidonic acid for eicosanoid synthesis.


Assuntos
Eicosanoides , Fosfatidilinositol 4,5-Difosfato , Ácido Araquidônico/metabolismo , Citosol/metabolismo , Eicosanoides/metabolismo , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Humanos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilação
6.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502319

RESUMO

HOXA9 and MEIS1 are frequently upregulated in acute myeloid leukemia (AML), including those with MLL-rearrangement. Because of their pivotal role in hemostasis, HOXA9 and MEIS1 appear non-druggable. We, thus, interrogated gene expression data of pre-leukemic (overexpressing Hoxa9) and leukemogenic (overexpressing Hoxa9 and Meis1; H9M) murine cell lines to identify cancer vulnerabilities. Through gene expression analysis and gene set enrichment analyses, we compiled a list of 15 candidates for functional validation. Using a novel lentiviral multiplexing approach, we selected and tested highly active sgRNAs to knockout candidate genes by CRISPR/Cas9, and subsequently identified a H9M cell growth dependency on the cytosolic phospholipase A2 (PLA2G4A). Similar results were obtained by shRNA-mediated suppression of Pla2g4a. Remarkably, pharmacologic inhibition of PLA2G4A with arachidonyl trifluoromethyl ketone (AACOCF3) accelerated the loss of H9M cells in bulk cultures. Additionally, AACOCF3 treatment of H9M cells reduced colony numbers and colony sizes in methylcellulose. Moreover, AACOCF3 was highly active in human AML with MLL rearrangement, in which PLA2G4A was significantly higher expressed than in AML patients without MLL rearrangement, and is sufficient as an independent prognostic marker. Our work, thus, identifies PLA2G4A as a prognostic marker and potential therapeutic target for H9M-dependent AML with MLL-rearrangement.


Assuntos
Biomarcadores Tumorais/metabolismo , Sistemas CRISPR-Cas , Regulação Neoplásica da Expressão Gênica , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/patologia , Proteína Meis1/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Fosfolipases A2 do Grupo IV/genética , Ensaios de Triagem em Larga Escala , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína Meis1/genética , Células Tumorais Cultivadas
7.
Gen Comp Endocrinol ; 311: 113842, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34252451

RESUMO

Previous studies have implicated the nuclear progesterone receptor (Pgr or nPR) as being critical to ovulation in fishes. This study investigated the expression of Pgr in zebrafish ovarian follicles throughout development as well as putative downstream targets of Pgr by searching the promoter regions of selected genes for specific DNA sequences to which Pgr binds and acts as a transcription factor. Expression of Pgr mRNA increases dramatically as follicles grow and mature. In silico analysis of selected genes linked to ovulation showed that the prostaglandin receptors ptger4a and ptger4b contained the progesterone responsive element (PRE) GRCCGGA in their promoter regions. Studies using full-grown follicles incubated in vitro revealed that ptger4b was upregulated in response to 17,20ß-P. Our studies also showed that the expression of phospholipase A2 (PLA2G4A) mRNA and protein, a key enzyme in prostaglandin synthesis, was upregulated in response to 17,20ß-P treatment. pla2g4a was not found to contain a PRE, indicating that it is regulated indirectly by 17,20ß-P or that it may contain an as-of-yet unidentified PRE in its promoter region. Collectively, these studies provide further evidence of the importance of Pgr during the periovulatory periods through its involvement in prostaglandin production and function by controlling expression of PLA2G4A and the receptor EP4b and that these genes appear to be regulated through the actions of 17,20ß-P.


Assuntos
Fosfolipases A2 do Grupo IV , Progesterona , Receptores de Prostaglandina E Subtipo EP4 , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Feminino , Fosfolipases A2 do Grupo IV/genética , Folículo Ovariano/metabolismo , Ovulação/genética , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
8.
Cancer Chemother Pharmacol ; 88(4): 689-697, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34255137

RESUMO

BACKGROUND: Cytosolic phospholipase A2alpha (cPLA2α), an enzyme that is responsible for the hydrolysis of membrane phospholipids, is a key mediator of tumor transformation, progression and metastasis. The role of cPLA2α in gastric cancer has not been revealed. METHODS: cPLA2α expression was analyzed using RT-PCR and immunohistochemistry approaches in gastric cancer patient samples (n = 26) and multiple cell lines (n = 7). cPLA2α function was studied using plasmid overexpression and siRNA knockdown approaches in SNU-1, MKN-74 and MKN-45 cell lines. The downstream effectors of cPLA2α were determined using biochemical assays. RESULTS: cPLA2α upregulation is a common feature in gastric cancer patients, particularly those with metastasis. cPLA2α overexpression is sufficient to promote gastric cancer cell growth and migration, and confer chemo-resistance. cPLA2α depletion is active against gastric cancer via inhibiting growth and migration, and inducing apoptosis in gastric cancer cells. Of note, cPLA2α depletion augments efficacy of chemotherapy. Mechanistic studies confirm that cPLA2α regulates gastric cancer biological activities via mainly regulating Ras/MEK/ERK and possibly Akt/ß-catenin pathways. Pearson correlation coefficient analysis also suggests a moderate positive correlation between cPLA2α and RAS in gastric cancer. CONCLUSIONS: Our work demonstrates cPLA2α inhibition as a therapeutic strategy to overcome chemo-resistance and highlights the association of cPLA2α and Ras in gastric cancer.


Assuntos
Antineoplásicos/farmacologia , Fosfolipases A2 do Grupo IV/genética , Neoplasias Gástricas/patologia , Proteínas ras/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Células Tumorais Cultivadas , Regulação para Cima , beta Catenina/metabolismo
9.
Sci Rep ; 11(1): 12587, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131250

RESUMO

Glioblastoma multiforme (GBM) is a life-threatening brain tumor. This study aimed to identify potential targets of the long noncoding RNA (lncRNA) HULC that promoted the progression of GBM. Two U87 cell lines were constructed: HULC-siRNA and negative control (NC). Quantitative real-time PCR (qRT-PCR) was performed to validate the transfection efficiency of HULC silencing vector. Mass spectrometry (MS) was used to generate proteomic profiles for the two cell lines. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to distinguish HULC-related genes and pathway mapping. Colony formation, Transwell, and wound-healing assays were used to investigate the functional effects of HULC knockdown on GBM. We identified 112 up-regulated proteins and 24 down-regulated proteins from a total of 4360 quantified proteins. GO enrichment illustrated that these proteins were mainly involved in organelle structure, catalysis, cell movement, and material metabolism. KEGG pathway analysis indicated that some of these proteins were significantly enriched in tight junction, metabolic pathways, and arachidonic acid metabolism. In vitro experiments demonstrated that HULC knockdown inhibited GBM cell proliferation, invasion, and migration. Our KEGG analyses revealed that PLA2G4A was a shared protein in several enriched pathways. HULC silencing significantly down-regulated the expression of PLA2G4A. Knockdown of HULC changed the proteomic characteristics of GBM and altered the behaviors of GBM cells. Specifically, we identified PLA2G4A as an HULC target in GBM. This study provides a new perspective on the mechanisms and potential drug targets of GBM treatment.


Assuntos
Inativação Gênica , Glioblastoma/genética , Fosfolipases A2 do Grupo IV/genética , Proteômica , RNA Longo não Codificante/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Humanos , MicroRNAs/genética , Transdução de Sinais/genética
12.
Nat Commun ; 12(1): 2330, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879780

RESUMO

The hypothalamus plays a central role in monitoring and regulating systemic glucose metabolism. The brain is enriched with phospholipids containing poly-unsaturated fatty acids, which are biologically active in physiological regulation. Here, we show that intraperitoneal glucose injection induces changes in hypothalamic distribution and amounts of phospholipids, especially arachidonic-acid-containing phospholipids, that are then metabolized to produce prostaglandins. Knockdown of cytosolic phospholipase A2 (cPLA2), a key enzyme for generating arachidonic acid from phospholipids, in the hypothalamic ventromedial nucleus (VMH), lowers insulin sensitivity in muscles during regular chow diet (RCD) feeding. Conversely, the down-regulation of glucose metabolism by high fat diet (HFD) feeding is improved by knockdown of cPLA2 in the VMH through changing hepatic insulin sensitivity and hypothalamic inflammation. Our data suggest that cPLA2-mediated hypothalamic phospholipid metabolism is critical for controlling systemic glucose metabolism during RCD, while continuous activation of the same pathway to produce prostaglandins during HFD deteriorates glucose metabolism.


Assuntos
Glucose/metabolismo , Fosfolipases A2 Citosólicas/metabolismo , Prostaglandinas/biossíntese , Núcleo Hipotalâmico Ventromedial/metabolismo , Animais , Ácido Araquidônico/metabolismo , Vias Biossintéticas , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Hiperglicemia/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfolipases A2 Citosólicas/antagonistas & inibidores , Fosfolipases A2 Citosólicas/genética , Fosfolipídeos/metabolismo
13.
Exp Biol Med (Maywood) ; 246(11): 1253-1262, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33641447

RESUMO

Abnormal lipid metabolism is regarded as a crucial cause of psoriasis. The specific mechanism of how phospholipase PLA2G4B mediates local immune dysfunction and skin lesions remains unclear. The aim of this study was to explore the mechanisms of anti-psoriasis and immune suppression effect by inhibiting PLA2G4B in psoriasis progression. We successfully transfected si-PLA2G4B in a murine keratinocyte cell-line PAM212 to verify the effect of progression by PLA2G4B. The Imiquimod psoriasis mouse model was then successfully constructed, followed by emulsion wrapped PLA2G4B-siRNA applied to the skin lesions. The phenotype, pathology, immunofluorescence staining of PLA2G4B, IL17, CD3, and CD1b, and bulk transcriptome analysis were performed to decipher the effect and mechanism of si-PLA2G4B. Interfering with PLA2G4B significantly inhibited the proliferation and migration of PAM212. The interference of PLA2G4B in vivo showed a therapeutic effect on psoriasis, comparable to that of betamethasone. The phenotype and pathology revealed reduced keratinocytes in the si-PLA2G4B group compared to the model mice. Immunofluorescence showed that CD1b, CD3+ T cells, and IL17 were suppressed in the skin lesions. RNA-seq and deconvolution revealed that immune cells such as myeloid dendritic cell and T cell CD8+ naive were inactivated. Th17 reduce the release of inflammatory factors such as IL17 and IL36. Pathway analysis revealed the potential therapeutic mechanism involved in the inhibition of sphingolipid or ceramide secretion. This study verified the anti-psoriatic effect of using si-PLA2G4B. The immune response was alleviated after administration. This phospholipase inhibition-based therapy sheds light on the pharmaceutical potential against psoriasis.


Assuntos
Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Psoríase/etiologia , Psoríase/terapia , Animais , Antígenos CD1/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Humanos , Imiquimode/toxicidade , Inflamação/patologia , Interleucina-17/metabolismo , Queratinócitos , Masculino , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Psoríase/patologia , RNA Interferente Pequeno
14.
Int J Immunopathol Pharmacol ; 35: 2058738421990952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33626953

RESUMO

Chronic inflammation in asthmatics is initiated/exacerbated by many environmental factors, such as bacterial lipopolysaccharide and allergens. Phospholipase A2 and histone acetyltransferase/deacetylases are enzymes involved in inflammatory process, particularly in lipid inflammatory mediators production and control of transcription of many inflammatory genes, respectively. The aim of the study was to identify differences in the inflammatory process in patients with severe and non-severe asthma, taking as a criterion expression of two groups of enzymes: phospholipases A2 and histone acetyltransferases/deacetylases. Thirty-two patients with severe, non-severe atopic to house dust mite asthmatics and 14 healthy volunteers were recruited. Peripheral blood mononuclear cells were stimulated with Dermatophagoides pteronyssinus allergen (nDer p1) and bacterial lipopolysaccharide (LPS). The expression of phospholipases A2 and histone acetyltransferases and deacetylases were assessed using TaqMan Low Density Array Cards. The protein expression was analyzed with immunoblot. Increased expression of phospholipase A2 Group IVC (PLA2G4C) and cytosolic phospholipase A2 gamma (cPLA2γ) protein was observed in peripheral blood mononuclear cells (PBMC) from severe asthmatics in response to LPS and nDer p1, compared to non-severe asthmatics. nDer p1-stimulated PBMC from severe asthmatics exhibit induced expression of HDAC1 and similar trend was observed in protein concentration. Decreased expression of EP300 occurred in PBMC of severe asthmatics. PBMC from non-severe asthmatics showed decreased expression of HDAC2 and PLA2G15 after LPS treatment. In conclusion, in response to LPS and dust mite allergen, PBMC from severe and non-severe asthmatics modulate expression of selected phospholipase A2, histone acetyltransferases and deacetylases, while increased expression of cPLA2γ characterizes PBMC response from severe asthmatics.


Assuntos
Asma , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/imunologia , Leucócitos Mononucleares/imunologia , Adulto , Alérgenos/imunologia , Antígenos de Dermatophagoides/imunologia , Asma/genética , Asma/imunologia , Asma/fisiopatologia , Proteína p300 Associada a E1A/genética , Feminino , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Humanos , Lipopolissacarídeos/imunologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro , Índice de Gravidade de Doença , Espirometria
15.
Proteins ; 89(6): 721-730, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33550612

RESUMO

Recently, it has been showed that cancer missense mutations selectively target the neighborhood of hinge residues, which are key sites in protein dynamics. Here, we show that this approach can be extended to find previously unknown candidate mutations and genes. To this aim, we developed a computational pipeline to detect significantly enriched three-dimensional (3D) clustering of missense mutations around hinge residues. The hinge residues were detected by applying a Gaussian network model. By systematically analyzing the PanCancer compendium of somatic mutations in nearly 10 000 tumors from the Cancer Genome Atlas, we identified candidate genes and mutations in addition to well known ones. For instance, we found significantly enriched 3D clustering of missense mutations in known cancer genes including CDK4, CDKN2A, TCL1A, and MAPK1. Beside these known genes, we also identified significantly enriched 3D clustering of missense mutations around hinge residues in PLA2G4A, which may lead to excessive phosphorylation of the extracellular signal-regulated kinases. Furthermore, we demonstrated that hinge-based features improves pathogenicity prediction for missense mutations. Our results show that the consideration of clustering around hinge residues can help us explain the functional role of the mutations in known cancer genes and identify candidate genes.


Assuntos
Biologia Computacional/métodos , Fosfolipases A2 do Grupo IV/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Neoplasias/genética , Atlas como Assunto , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Fosfolipases A2 do Grupo IV/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Família Multigênica , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , Conformação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
16.
Anticancer Res ; 41(1): 211-218, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33419815

RESUMO

BACKGROUND/AIM: Extracellular acidity, a characteristic of solid tumors, has been proposed to be a critical factor for aggravating tumor malignancy and conferring resistance to therapeutics. Recently, acidity has been implicated in inflammatory responses, which are mediated through active lipid metabolites in various human tissues. In the present study, we investigated whether acidity can affect lipid-mediated signaling, and found that phospholipase A2 (PLA2) activity increased at acidic pH in SNU601 and AGS gastric carcinoma cell lines. MATERIALS AND METHODS: To identify the PLA2 isoform that is responsible for the acidity-induced activity, we assessed mRNA levels of cPLA2 isotypes through real-time qPCR, and protein levels through immunoblot assay in cells cultured in acidic medium. RESULTS: It was found that acidic pH conditions markedly elevated the PLA2γ expression. A gene interference study using specific siRNA of cPLA2γ suggested that expression of cPLA2γ in acidic culture conditions may be associated with protection of cancer cells in acidic environment, as shown by cell viability and clonogenic assays. In addition, expression of cPLA2γ appeared to confer cell resistance to anticancer drugs under acidic pH conditions. CONCLUSION: Acidity-induced cPLA2γ expression may exert protective effects by imparting resistance to the gastric cancer cells under acidic environment.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Fosfolipases A2 do Grupo IV/genética , Concentração de Íons de Hidrogênio , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Antineoplásicos/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Espaço Extracelular/metabolismo , Expressão Gênica , Inativação Gênica , Fosfolipases A2 do Grupo IV/metabolismo , Humanos , RNA Interferente Pequeno , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
17.
Science ; 371(6527): 386-390, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33479150

RESUMO

Convergent evolution provides insights into the selective drivers underlying evolutionary change. Snake venoms, with a direct genetic basis and clearly defined functional phenotype, provide a model system for exploring the repeated evolution of adaptations. While snakes use venom primarily for predation, and venom composition often reflects diet specificity, three lineages of cobras have independently evolved the ability to spit venom at adversaries. Using gene, protein, and functional analyses, we show that the three spitting lineages possess venoms characterized by an up-regulation of phospholipase A2 (PLA2) toxins, which potentiate the action of preexisting venom cytotoxins to activate mammalian sensory neurons and cause enhanced pain. These repeated independent changes provide a fascinating example of convergent evolution across multiple phenotypic levels driven by selection for defense.


Assuntos
Venenos Elapídicos/enzimologia , Elapidae/classificação , Elapidae/genética , Evolução Molecular , Fosfolipases A2 do Grupo IV/genética , Dor , Células Receptoras Sensoriais/fisiologia , Adaptação Biológica/genética , Animais , Venenos Elapídicos/genética , Filogenia , Células Receptoras Sensoriais/metabolismo
18.
Funct Integr Genomics ; 21(1): 113-124, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33404913

RESUMO

Nandan-Yao chicken is a Chinese native chicken with lower fat deposition and better meat quality. Fat deposition is a quite complex and important economic trait. However, its molecular mechanism is still unknown in chickens. In the current study, Nandan-Yao chicken was divided into two groups based on the rate of abdominal fat at 120 days old, namely the high-fat group and low-fat group. The total RNAs were isolated and sequenced by RNA sequencing (RNA-seq). After quality control, we gained 1222, 902, 784, 624, and 736 differentially expressed genes (DEGs) in abdominal fat, back skin, liver, pectoral muscle, and leg muscle, respectively. Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that significantly enriched GO term and KEGG signaling pathway mainly involved cytosolic ribosome, growth development, PPAR signaling pathway, Wnt signaling pathway, and linoleic acid metabolism in abdominal fat, back skin, and liver. While in pectoral muscle and leg muscle, it is mainly enriched in phosphatidylinositol signaling system, adrenergic signaling in cardiomyocytes, cytosolic ribosome, and cytosolic part. Sixteen genes were differentially expressed in all five tissues. Among them, PLA2G4A and RPS4Y1 might be the key regulators for fat deposition in Nandan-Yao chicken. The protein-protein interaction (PPI) network analysis of DEGs showed that PCK1 was the most notable genes. The findings in the current study will help to understand the regulation mechanism of abdominal fat and intramuscular fat in Nandan-Yao chicken and provide a theoretical basis for Chinese local chicken breeding.


Assuntos
Tecido Adiposo/metabolismo , Galinhas/genética , Mapas de Interação de Proteínas , Transcriptoma , Tecido Adiposo/crescimento & desenvolvimento , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Via de Sinalização Wnt
19.
Hum Cell ; 34(1): 60-75, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33040229

RESUMO

Osteoarthritis (OA), which is characterized by articular cartilage degeneration, shows a gradually increasing incidence with age. This study explored the molecular mechanism underlying the proliferation and apoptosis of chondrocytes during OA progression. In this study, chondrocytes were isolated from human knee cartilages. The targeted relationship among nuclear enriched abundant transcript 1 (NEAT1), microRNA-543 (miR-543) and PLA2G4A was predicted on TargetScan V7.2 and starBase and validated by performing dual-luciferase reporter assay. High-expressed NEAT1 was detected in OA cartilage and chondrocytes. NEAT1 was negatively correlated with miR-543 and was low-expressed in OA cartilage and PLA2G4A was negatively correlated with miR-543 and was high-expressed in OA cartilage. In OA chondrocytes, the overexpressed NEAT1 inhibited the expressions of p-Akt1 and Bcl-2 and upregulated that of matrix metalloprotease (MMP)-3, MMP-9, MMP-13, interleukin (IL)-6 and IL-8, but such effects of overexpressed NEAT1 were reversed by miR-543 mimic. SiRNA-NEAT1 exerted an opposite effect to NEAT1 overexpression on OA chondrocytes, but this could be reversed by miR-543 inhibitor. The effect of PLA2G4A overexpression was the opposite to miR-543 mimic on OA chondrocytes. In conclusion, NEAT1 could sponge miR-543 to induce PLA2G4A expression, inhibit chondrocyte proliferation and promote apoptosis.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Condrócitos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Expressão Gênica/genética , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/genética , Osteoartrite/patologia , RNA Longo não Codificante/fisiologia , Idoso , Cartilagem Articular/citologia , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Clin Transl Oncol ; 23(3): 648-656, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32776271

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is the most common type of acute leukemia and biologically heterogeneous diseases with poor prognosis. Thus, we aimed to identify prognostic markers to effectively predict the prognosis of AML patients and eventually guide treatment. METHODS: Prognosis-associated genes were determined by Kaplan-Meier and multivariate analyses using the expression and clinical data of 173 AML patients from The Cancer Genome Atlas database and validated in an independent Oregon Health and Science University dataset. A prognostic risk score was computed based on a linear combination of 5-gene expression levels using the regression coefficients derived from the multivariate logistic regression model. The classification of AML was established by unsupervised hierarchical clustering of CALCRL, DOCK1, PLA2G4A, FCHO2 and LRCH4 expression levels. RESULTS: High FCHO2 and LRCH4 expression was related to decreased mortality. While high CALCRL, DOCK1, PLA2G4A expression was associated with increased mortality. The risk score was predictive of increased mortality rate in AML patients. Hierarchical clustering analysis of the five genes discovered three clusters of AML patients. The cluster1 AML patients were associated with lower cytogenetics risk than cluster2 or 3 patients, and better prognosis than cluster3 patients (P values < 0.05 for all cases, fisher exact test or log-rank test). CONCLUSION: The gene panel comprising CALCRL, DOCK1, PLA2G4A, FCHO2 and LRCH4 as well as the risk score may offer novel prognostic biomarkers and classification of AML patients to significantly improve outcome prediction.


Assuntos
Proteína Semelhante a Receptor de Calcitonina/genética , Proteínas de Ligação a Ácido Graxo/genética , Expressão Gênica , Fosfolipases A2 do Grupo IV/genética , Leucemia Mieloide Aguda/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas rac de Ligação ao GTP/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidade , Análise Multivariada , Prognóstico , Fatores de Risco , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...